Peces larvívoros con potencial para el control biológico de estados inmaduros de zancudos en el Perú

José Iannaccone Oliver Lorena Alvarino Flores

RESUMEN

IANNACONE J. ALVARINO L. 1997.- Peces larvívoros con potencial para el control biológico de estados inmaduros de zancudos en el Perú. Rev. per. Ent. 40.- Los autores han revisado la información publicada sobre el uso de peces como agentes de control biológico de estados inmaduros de zancudos, con particular referencia a su taxonomía, ecología y biología de peces larvívoros nativos e introducidos en el Perú, enfatizando la importancia para ser usados en programas de control integrado de zancudos vectores de patógenos. Son mencionadas algunas limitaciones en el uso de estos peces. En este trabajo se presenta una lista de 136 peces nativos con actividad larívora y con potencial para ser usados en la lucha biológica contra estados inmaduros de zancudos en el Perú.

Palabras clave: peces larvívoros, zancudos, mosquitos, control biológico, malaria.

SUMMARY

IANNACONE J. ALVARINO L. 1997.- Larvivorous fishes as possible agents of biological control of immature stages of mosquitoes in Peru. Rev. per. Ent. 40.- The authors have reviewed the information published about the use of fishes as agents of biological control of immature stages of mosquitoes. Most attention has been given to the taxonomy, ecology and biology of native and introduced larvivorous fishes in Peru, and their importance to be used in integrated pest management of mosquitoes vector-borne diseases. Some limitations in the use of fishes are mentioned.

A list of 136 native fishes with larvivorous preference and potential for their use in the biological control against immature stages of mosquitoes in Peru is presented.

Key words: larvivorous fishes, mosquito, biological control, malaria.

Introducción

Los zancudos (Diptera: Culicidae) son insectos hematofágos de vida libre, denominados por BALASHOV (1984) como "micropredadores". Estos dipterarios son considerados por MARSHAL (1988) como organismos biológicos con centro de origen neotropical, llamados "mosquitos" en los países de habla inglesa.

Los zancudos son importantes por producir: (1) daño directo, provocando picaduras tanto al exterior (exófilos) o al interior (endófilos) de diversas especies; (2) daño indirecto por ser vectores de patógenos causantes de malaria humana, fiebre amarilla urbana, fiebre amarilla selvática y dengue, además de su papel importante en enfermedades como filariasis y encefalitis viral. Actualmente según la OMS la malaria es la enfermedad tropical parasitaria más importante, con un estimado de 280 millones de personas infectadas a nivel mundial, y más de 110 millones de casos clínicos al año. Con una mortalidad anual de 2 millones, afectando a 103 países y 40% de la población mundial está expuesta a esta enfermedad (KNUDSEN Y SLOFF 1992).

En el Perú, la OPS (1991) informó que durante 1989, fueron notificados 32,114 casos de malaria. Así, los departamentos de Junín, Ayacucho, Madre de Dios, San Martín y Pasco alcanzaron un Incidencia Parasitológica Anual (IPA) de 58,9%; 26,9%; 18,7%; 15,4% y 14,8% respectivamente. En el Perú más del 99% de los casos son por infección por el protozoo Plasmodium vivax; pero la malaria producida por Plasmodium falciparum ("malaria maligna") ha sido detectada cerca al borde ecuatoriano (WORLD MALARIA 1991).

Actualmente en Latinoamérica existe una estrategia para el control de vectores de patógenos, en especial para el control de malaria, o una "lucha antivectorial integrada", requiriéndose programas integrados de vectores para el control de esta enfermedad (CLARK Y SUÁREZ 1991, 1992).

En el caso de las medidas de control contra los estados inmaduros (huevos, larvas y pupas), tenemos medidas de modificación ambiental u ordenamiento ambiental, como son:
Sanamiento y manejo del agua (drenaje superficial y del subsuelo, la construcción de embalses, diques y represas de agua, reflejo de depresiones donde se acumula el agua, destrucción de plantas epífitas y pequeños envases donde se acumula el agua); (2) Transformación de la calidad del agua (variaciόn de la salinidad, variación de la relación superficial perimetro) (OMS 1980); (3) Uso de atrayentes sexuales; (4) Uso de insecticidas sintéticos como larvicidas y adulticidas (OMS 1983); (5) Uso de toxinas de Bacillus thuringiensis israelensis y B. sphaericus (Yo et al. 1985, Loom 1991, Gul et al. 1992); (6) Uso de algas como Chlorella glomerata y Chaos (Schulte et al. 1983); (7) Reguladores de crecimiento (sintéticos), muclag de semillas de crуcфeras, extractos de diversas plantas (Singh et al. 1984); (8) Se ha conseguido la reducción de las zonas donde los estados inmaduros de zancudos se refugian (cubierta vegetal de algas), usando peces herbívoros como Cyprinus carpio "carpa"; (9) En el control biológico se han usado algunas especies parásitas como el nematodo Meromithidia (Romuromorjimus culicicola) (Pfeiffer 1989), protozoarios como Notosoma, Plasmodium, Stenomelia y Thioana y hongos como Collyryan; virus de insectos: predadores como Toxolymphites brevijalpulso se han observado en depósitos pequeños como lamas vacas y llamas (Makarowski 1985). (10) Macrolycophe aspericornis (Copepoda) ha sido utilizado como agente de control biológico de estados inmaduros de zancudos en aguajos de árboles y envases artificiales (Rivirio et al. 1987). (11) Se han empleado peces larvoros como Gambusia affinis, Pocidaria reticulata y Lebiasina humilida como agentes de control biológico contra estados inmaduros de zancudos. Algunas géne ros de peces como Notophorium y Cyprinidus tienen la ventaja que sus huevos son resistentes a la desecación, y por lo tanto adecuados para ser usados en el control de inmaduros de zancudos en depósitos transitorios de agua (Loh 1983, Sasa y Kishihara 1983, WHO 1981). El uso de este tipo de peces ha sido colocado por la WHO como "Prioridad II" en la lista para el desarrollo de agentes de control biológico (WHO 1982). Además programas intensivos de cultivo han sido desarrollados para peces neotropicales predadores usados en programas de control de zancudos (WHO 1984) y adicionalmente hay un considerable interés en estudiar el uso de peces nativos para el control integrado de estados inmaduros de zancudos (Marshall 1988, Ve et al. 1983).

Revisión de la literatura
Algunos aspectos biológicos de los estados inmaduros de zancudos

Huevos. En algunas especies pueden sobrevivir largos períodos fuera del agua, pero en condiciones húmedas. Pueden ser depositadas individualmente o en grupos. Son colocados por las hembras en zonas protegidas por el viento y las olas.

Larvas. La mayoría de los Culicinae se suspende diagonalmente a la superficie del agua por un pronunciado sigiratorio. En cambio en los Anophelineae se suspenden horizontalmente a la superficie del agua por pelos plumosos. La larva nuda cuatro veces, la última nuda origina una pupa. En los culicinae, para completar su desarrollo larval son requeridos cerca de 7 días dependiendo de la temperatura; las larvas de anofélinos generalmente requieren un tiempo más largo.

Pupas. De muy corta duración, usualmente de 2 a 3 días. Siendo remarcadamente activas y sensibles a las perturbaciones ambientales.

Los estados inmaduros de diferentes especies de zancudos prefieren distintos criaderos naturales y artificiales (permanentes o semipermanentes y transitorios para ambos tipos de criaderos) (Walker et al. 1991). Así, Lourenço-de-Oliveira et al. (1986) para Rio de Janeiro, Brasil, indica que Anopheles aquinasi, An. novorensis, Ae. scapulatus, Ae. taeniopygus, Cx. amazonensis, y la mayoría de especies de Culex del subgénero Culex y Mansonia, Pseudopygus y Uranotaenia prefieren ambientes acuoso naturales. A nivel de bromeliácceas epífitas, tenemos formas inmaduras de Culex (Micracutes) y de Phannomia.

En cuanto a los hábitats, la mayoría de especies de Anopheles prefieren ambientes líticos (bordes de lagos, charcos y estanques permanentes), líticos y corrientes de agua (Mellig et al. 1992).

Según la OPS (?), en el Perú entre las especies de Anophelinae más importantes tenemos:

- Anopheles pseudopunctipennis es el vector principal de malaria en el Perú. En todas las provincias biogeográficas del Perú, excepto en Loreto y Madre de Dios.
- Anopheles albimanus, es encontrada solamente en los valles noroccidentales del Perú, en el Bosque Seco Fruitorial.
- Anopheles benemichi, se encuentra en el lago amazónico, en la provincia biogeográfica de la Amazonía.
- Anopheles darlingi, distribuido en el lago amazónico en los ríos Marañón, parte de Putumayo, y río Blanquero (Tupiche-Ucayali) en la provincia biogeográfica de la Amazonía.

VCTores secundarios:
- Anopheles punctimacula, distribuida en la vertiente occidental, desde Tumbes hasta Ica, en la provincia biogeográfica del Bosque Seco Meridional, Desierto Pacífico y Andes Meridionales.
- Anopheles ornabilis, distribuida en el llano amazónico y en la Selva Alta en la Amazonia Subtropical.
- Anopheles vangel, en el llano amazónico y selva alta.

Control biológico y peces larvívoros

Menin y Martín (1986) señalan que en los peces, la forma y tamaño de las mandíbulas pueden estar relacionadas con los hábitos alimentarios, además de las formas y posiciones de la boca son factores potenciales que influyen en el tipo de presas que son ingeridas por los peces.

El uso eficaz de los peces larvívoros como predadores de larvas de zancudos, en especial de anophelinos ha sido ampliamente demostrado en América Central y es usado en la actualidad regularmente. Debido a la situaciones adversas existentes en algunas zonas malarías por la ineficacia del uso " exclusivo" de insecticidas se está llevando a cabo nuevos ensayos con peces larvívoros (Beltrán 1978).

Es fundamental tener en cuenta que el uso de un determinado método de control no excluye a otro. El éxito dependerá de identificar el método o combinación de métodos, que las circunstancias locales requieran.

El uso de peces larvívoros constituye una "herramienta complementaria" en un plan de control larvario integrado. Si se le aplica como método único, sólo en circunstancias excepcionales será efectivo para tener éxito. Pero también es cierto que en muchas condiciones en que se dan en el campo, otros métodos de control no van a tener éxito (por ej., el uso de Bacillus thuringiensis var. israelensis) a menos que se apliquen asociados con el uso de peces larvívoros (Birkey y Liem 1983).

WHO (1984) recomienda la utilización de métodos físicos, químicos y biológicos combinados parte del llamado "control integrado". Este busca un descenso general de la densidad de vectores (exófilos y endófilos). También en aquellas zonas donde la aplicación residual de insecticidas es inefectiva, por resistencia del vector a los mismos o por su comportamiento o por la falta de superficies húmedas u otros factores.

Beltrán (1978) señala que el control integrado trata de potenciar la combinación de diferentes métodos, como pueden ser el uso de peces larvívoros en aguas que también son tratadas con insecticidas.

Con el método combinado hay una menor presión selectiva del insecticida, ya que no son los únicos responsables de la mortalidad de los estados inmaduros, así hay menor riesgo que se desarrolle resistencia (OMS 1987), o si se produce es mucho más lento.

Al programarse el uso combinado de peces e insecticidas debe tomarse en cuenta dos aspectos:
1. La toxicidad de los insecticidas para el pez;
2. Las alteraciones que puedan traer en el ecosistema el uso de ambos métodos combinados.

Criterios para la evaluación de peces larvívoros

La WHO (1981) y la OMS (1987) establecieron las siguientes pautas para la evaluación de especies de peces, como posibles agentes controladores biológicos para inmaduros de zancudos:

1. Disposición favorable en atacar y alimentarse de inmaduros de zancudos;
2. Fácil adaptabilidad a condiciones ambientales locales (sencilla colonización);
3. Potencialidad de crianza y producción en masa (maduración rápida y fecundidad elevada);
4. Inocuidad para la fauna no objeto del control;
5. Utilización con otros métodos;
6. Tamaño pequeño (generalmente menor de 6 cm de longitud), tendencia del cuerpo a ser alargado y posición de la boca generalmente hace prótasis hacia arriba;
7. Acceso de los peces a aguas de poca profundidad (pechos de aguas superficiales);
8. Tolerancia a la salinidad y contaminación;
9. Tolerancia a insecticidas.

El hecho de que los países desarrollados hayan continuado sin interrupción con el uso de peces larvívoros por los últimos 80 años, para el control de zancudos, aún cuando cuentan con recursos para el uso de los más modernos insecticidas, demuestra la factibilidad operativa y la efectividad de este método de control (Beltrán 1978).

Limitaciones en el uso de peces larvívoros para el control de zancudos

Según Beltrán (1978) y Health Technology (1990), como cualquier método de control esta medida tiene sus desventajas:

1. No todos los criaderos de zancudos son al mismo tiempo un buen "habitat" para los peces larvívoros;
2. Introducción precipitada de peces larvívoros en diferentes ambientes puede tener resultados desastrosos, destruyendo las especies de peces e insectos ya existentes (nativas) (Bernet 1982);
3. Peces larvívoros no accesibles a aguas donde las hembras de zancudos han ovipuesto;
4. No es una medida de control individual, sino a nivel colectivo (o de comunidad);
5. Efectividad cuando están presentes en gran número;
6. Mortalidad de peces en grandes proporciones por predadores, contaminación química, insuficiencia de luz, comida, oxígeno y ectoparásitos;
7. Actividad larvívoras puede verse disminuida en presencia de un alimento alternativo;
(8) Imposibilidad de uso sobre estados
inmaduros de zancudos que crecen sobre epífitas;

Control de zancudos, arrozales y peces larvarios

La relación existente entre estos tres factores es de importancia, ya sea para disminuir las densida
des de los zancudos o para controlar las endemias de importancia reduciendo las densidades de los
vectores (Beltrán 1978).

Han sido utilizados diversos peces para controlar zancudos vectores de malaria endémica como
Cyprinus carpio “carpa”, Canna davisii y Gambusia affinis.

Espécies de peces larvarios citadas para el Perú

Jenkins (1964) menciona para América del
Sur el uso de por lo menos 30 especies de peces larvarios, de 16 familias diferentes, principalmente nativos que se alimentan de larvas de
zancudos. De estas especies, en el Perú, según el
listado de Ortega y Varela (1986), 12 especies están presentes, pertenecientes en 9 diferentes
familias.

OSTEICHTHYES

CYPRINIFORMES

Cyprinidae
Cyprinus carpio Linnaeus, 1758 (Introducido).

CHARACIFORMES

Characidae
Astyanax bimaculatus (Linnaeus, 1758)
Charax gibbosus (Linnaeus, 1758)
Hemigrammus rodowyi Durbin, 1900
Tetragonopterus chateau Spix, 1829

Lebiasinidae
Lebiasina bimaculata Valenciennes, 1846

SILURIFORMES

Pimelodidae
Rhaindia sebae (Valenciennes, 1840)

Callichthyidae
Haplochromis littoralis (Hancock. 1828)

Astrolebiidae
Astrolebatus spp.

ATHERINOMORPHA

Rivulidae
Rivulus sp.

Pocilidae
Poecilia reticulata Peters, 1859 (Introducido).

PERCIFORMES

Cichlidae
Astronotus ocellatus (Agassiz, 1831)

Aspectos biológicos de peces introducidos
con actividad larívora

Gambusia affinis (Pocilidae)

Conocida en los países de habla inglesa como
“mosquito fish”, nativo de la parte sur de Norte América. Ha sido introducido en muchas partes del
mundo con resultados variables. Es considerada la
especie más adecuada de pez larívoro para el con-
trol de zancudos entre otras razones, por sus carac-
terísticas anatómicas: su cabeza y dorso son achata-
los lo que le permite moverse por debajo de la superfi-
cie de agua; su boca hace pronunciada hacia adelante y
arriba; su tamaño pequeño le permite habituar y
buscar comida en aguas superficiales, siendo sus
preferencias la mayoría de especies de larvas de
anofelinae.

Su tamaño de 2.5 - 6.0 cm, también le permite
penetrar entre la vegetación, si no es muy espesa.
Otras características importantes son su alta fecun-
didad, es omnívoro y su apetito voraz especialmente
por larvas de insectos (Beltrán 1978).

Fue durante a su reproducción sólo necesita
copular una sola vez para producir un número sucesi-
vo de nidadas. Con un periodo de gestación de 23 a
24 días. Su longevidad es entre 2 a 5 años. La
Gambusia es un pez de aguas templadas de regiones
tropicales. El punto débil de la Gambusia es su poca
tolerancia al bajo contenido de oxígeno del agua.
Se cria preferentemente en aguas dulces, pero tam-
bien en aguas salobres.

Hughes y Hamson (1991) encontraron en G.
affinis una posible fuente de resistencia o tolerancia
ciertos insecticidas organofosforados. Casanovas
(1983) indica que prefieren ambientes de agua abier-
tos más que los bordes. No se sabe si la emigración
afecta la eficiencia de G. affinis en controlar campos
de arroz infestados con zancudos. Cunha (1983)
avisa que las temperaturas altas inducen la repro-
ducción en invierno e incrementan la producción de
dos de peces en California.

El control combinado de inmaduros de zancu-
dos usando Bacillus thuringiensis y peces larvarios,
producen un efectivo control (Yu et al. 1983). Liu
(1983) señala que Gambusia affinis ha sido usado
para el control de Culex quinquefasciatus y C. pipiens
en desagües, cisternas, manantiales, zanjas y peque-
níos cuerpos de agua.

Sasa y Kurohara (1983) investigan el efecto de
la contaminación del agua en G. affinis, habiéndose
establecido en canales y bahías de Tokio, Japón;
cultivándose incluso en aguas contaminadas, pro-
dujo un buen control de zancudos.
Algunos peces larvívoros nativos peruanos: 1, Lethrinus limaculatus; 2, Pyrrhulinae; 3, Chaetodon; 4, Argyropelecus; 5, Hypsesolebias; 6, Hemigrammus; 7, Ceratogadus; 8, Gestreptecus sternula. (El grosor de las flechas indica la actividad larvívora de las especies de peces; grosor doble = actividad alta; grosor simple = actividad media; líneas punteadas = actividad baja).

(1983) indican que *Caranx affinis* sobrevive en aguas con gran cantidad de materia orgánica por 14 semanas, sin copular. *G. affinis* seleccionó larvas en zonas abiertas, con vegetación sumergida y en cultivos de arroz maduro (LINDHOLM et al. 1983). Por otra parte CLARK y MOFFLE (1985) manifiestan que *G. affinis* presenta una baja fecundidad y fertilización en cultivo en masa comparándolo con algunos peces nativos de California, USA.

Poecilia reticulata (Pseudidae).

Fue el primer pez utilizado como agente de control biológico contra estados inmaduros de zanahorias, llamado “millos”, por su alta capacidad de reproducción, *Poecilia reticulata* Peters (= *Lebistes reticulata*).

Jennings (1964) manifiesta que esta especie de pez es típicamente tropical, usada a gran escala a nivel mundial, estableciéndose exitosamente a nivel mundial. La hembra mide 3,0-3,8 cm. La multiplica- ción en climas tropicales se lleva a cabo durante todo el año. Las nidadas, de 20 a 25 crías cada una, se producen una tras otra con 15 días de intervalo. Son omnívoros y ovovíparos (esto último les da mayor oportunidad de sobrevivencia). Las hembras sólo necesitan copular una sola vez para continuar
producen numerosas crías sucesivas. Son ligeramente resistentes a algunos piretoideos en agua (Baltasar 1978).

Sasa y Kimbara (1983) mencionan que es un pez tropical nativo, efectivo en el control de larvas de zancudos, pudiendo reproducirse en aguas alimen- te contaminadas.

Macropomus opercularis (Anabatidae)

Breves comentarios sobre algunos peces nativos

La lista que se incluye contiene 196 especies de peces zoófagos con uso potencial de ser usados como agentes de control biológico. Las figuras 1 y 2 muestran la diversidad de formas de peces nativos carnívoros de importancia (óvivores, larvorios y pupívoros) de estados inmaduros de zancudos en el Perú.

Lebiasina bimaculata (Lebiasinidae) (Fig. 1)

Astronotus ocellatus (Cichlidae)

Es un pez indígena de la región amazónica. Su biología y reproducción en masa es bien co- nocida (Brana 1953, Fontes 1951). En condi- ciones experimentales se ha visto que es un efectivo predador de inmaduros de zancudos (Consoli et al. 1991). Es una especie nativa de amplia distribución geográfica, y su impacto ecológico y su adaptabilidad podría en muchos casos no pre- sentar problemas. Grandes ambientes deberían ser considerados como reservorios naturales, de- bido a que los peces adultos de esta especie pue- den ser usados en la alimentación (Motta y Guiria 1971). El tamaño de los adultos de hasta 30 cm, resulta desfavorable, pues imposibilita su uso en aguas superfi- ciales.

Pyrhulina spp. (Lebiasinidae) (Fig. 2)

Pequeños peces, 5-7 cm, con dimorfismo sexual y de cuerpo alargado. Viven en aguas tran- quilas superfi- ciales y se alimentan de inmaduros de insectos.

Apistogramma spp. (Cichlidae) (Fig. 9)

Pericos con pequeño talla, 1.5 a 6.0 cm, y cuerpo alargado. Viven en lagunas y remansos de arroyos, con corazón insectos. Se les encuentran en aguas clara, blancas e turbias.

Rinclus spp. (Rinelidae) (Fig. 12)

Astyanax bimaculatus (Characidae) (Fig. 4)

Cheirodon spp. (Characidae) (Fig. 3)

Puede ser considerado como un pez anual. Des- ventaja que no cría fácilmente en cautiverio.

Carnegiella striata (Gasteropelecidae) (Fig. 7)

Vive en aguas tranquilas y cerca a orillas de diferentes arroyos a lo largo de trochas en la Amazonia. Se alimenta de Culicidae.

Thoracocharax stellatus (Gasteropelecidae)

De cuerpo algo triangular, muy comprimido. Habita partes superficiales de ríos de fondo blanco en la Amazonía. Se alimenta de pequeños invertebrados incluyendo Culicoides.

Astroblepidae y **Pimelodidae**

Aunque no presentan la forma "representativa", presentan actividad larviva sobre Culicidae.

Aequidens rivulatus (Cichlidae) (Fig. 10)

Peces típicamente zoófagos, se alimentan de estados inmaduros de zancudos.

Orden de importancia de los géneros de peces a ser evaluados en laboratorio para conocer bien su activi- dad larvoriva

Lebiasina bimaculata (Lebiasinidae)

Pyrhulina spp. (Lebiasinidae)

Rinclus spp. (Rinelidae)

Apistogramma spp. (Cichlidae)

Astyanax bimaculatus (Characidae)

Cheirodon spp. (Characidae)

Aequidens rivulatus

Hemigrammus spp. (Characidae)

Onistus spp. (Cyprinodontidae)

Hyphessobrycon spp. (Characidae)

Carnegiella striata (Gasteropelecidae)

Gasteropelecus sterniella (Gasteropelecidae)
Pinelodels spp. (Pinelodidae)
Astrobolus spp. (Astrobolidae)

Peces fitófagos que disminuyen las poblaciones de larvas de zancudos

Incluye especies que, cuando son juveniles, despejan la vegetación, y cuando son adultos, facilitan que los estados inmaduros de zancudos sean atacados por peces larvarios y otros predecadores. Tenemos: dos Cichlidae: *Oreochromis mossambicus*, *Tilapia rendalli* y un Cyprinidae: *Cyprinus carpio* (Ham & Pal 1984, OMS 1982).

Conclusiones

1.- El uso de peces zoófagos como agentes de control biológico contra estados inmaduros de zancudos dentro de los programas de Control Integrado de Vectores, es una estrategia potencial muy prometedora.

2.- El uso de peces larvarios debe ser utilizado, previo análisis minucioso del problema, no como una medida aislada, sino combinada e integrada dentro de un conjunto de estrategias de control.

3.- Debe pensarse en usar primero peces nativos o indígenas, los cuales deberán cumplir con ciertos requisitos básicos, antes de utilizar especies introducidas, pues en algunos casos se pueden producir efectos adversos.

4.- Se incluye una lista de 136 especies de peces zoófagos u omnivorus nativos del Perú que se conocen por su actividad sobre estados inmaduros de zancudos, pertenecientes a 4 órdenes, 8 familias y 19 géneros, los cuales deberán ser los primeros en ser evaluados completamente, si se les desea incluir como agentes de control biológico, dentro de los programas de mancha integrado de estados inmaduros de zancudos vectores.

Recomendaciones

1.- Estudiar el tipo de ambiente acuático preferido por una determinada especie de estado inmaduro de zancudo y el tipo de pez larvarioro presente allí.

2.- Llevar a cabo pruebas de laboratorio para observar la actividad larvaria de las especies antes mencionadas, priorizando en zonas endémicas de malaria y en otras enfermedades infecciosas transmitidas por zancudos.

3.- Realizar pruebas de toxicidad (tolerancia y resistencia a insecticidas) y a otros contaminantes ambientales en peces larvarios.

LISTA DE PECES NATIVOS LARVARIVOS CON POTENCIAL PARA SER USADOS EN LA LUCHA BIOLOGICA CONTRA ESTADOS INMADUROS DE ZANCCUDOS EN EL PERÚ

(La distribución geográfica se basa en las provincias biogeográficas de M. Udvardy (1975), BSE = Bosque seco equatorial; DP = Desierto Pacífico; AM = Andes meridionales; Y = Yungas; A = Amazonía; TI = Lago Titicaca; P = Puna).

CHARACIFORMES

Characidae
Atrypus binoculum (Linnaeus, 1758). A.
Charodon fugitiva (Cope, 1870). A.
Charodon leucon Gery, 1974. A.
Charodon ortegai Vary y Gery, 1980. A.
Charodon praecox Lüken, 1874. A.
Hemigrammus heros Durlin, 1918. A.
Hemigrammus lenticus Gery, 1964. A.
Hemigrammus lenatus Durlin, 1918. A.
Hemigrammus margaritatus Ellin, 1914. A.
Hemigrammus niger Trotter, 1945. A.
Hemigrammus micropterus lucius (Gery, 1959). A.
Hemigrammus ocelloides (Steindacher, 1882). A.
Hemigrammus pulcher Gery, 1938. A.
Hemigrammus quadricipitis Durlin, 1909. A.
Hemigrammus schneider (Steindacher, 1882). A.
Hemigrammus spinifrons Gill, 1858. A.

Hypseleobostron anomala Fowler, 1913. A.
Hypseleobostron bentii Durlin, 1908. A.
Hypseleobostron erythrostigma (Fowler, 1903). A.
Hypseleobostron granulosum Gery, 1964. A.
Hypseleobostron inchi Gery, 1964. A.
Hypseleobostron loricatus Ladiges, 1954. A.
Hypseleobostron minus Durlin, 1909. A.
Hypseleobostron peruviana Ladiges, 1928. A.
Hypseleobostron robustulus (Fowler, 1870). A.
Hypseleobostron tenuis Gery, 1964. A.

Gasteropelecidae
Carnegiella strigata (Ganther, 1854). A.
Gasteropelecus sternactivis (Linnaeus, 1758). A.
Thoracocharax stellatus (Kner, 1860) A.

Lebiasinidae
Lebiasianus incisus Valenciennes, 1846. BSE, DP.
Pseudonannus elongatus Bolsinger, 1987. A.
Pyrrhulina australis Eigenmann & Kennedy, 1909. A.
Pyrrhalina breni Pearson, 1924. A.
Pyrrhalina brevis Steindachner, 1875. A.
Pyrrhalina eleniowa Fowler, 1940. A.
Pyrrhalina istea (Cope, 1872). A.
Pyrrhalina melanostoma (Cope, 1878). A.
Pyrrhalina oertesi Myers, 1926. A.
Pyrrhalina semisulcata Steindachner, 1875. A.
Pyrrhalina spadile Weitzman, 1960. A.
Pyrrhalina vittata Regan, 1912. A.

SILURIIFORMES

Pinelodidae
Pinelodella boliviensis Eigenmann, 1917. A.
Pinelodella buckleyi (Boulenger, 1887). A.
Pinelodella cristata (Müller & Troschel, 1848). A.
Pinelodella cyprinoptera (Cope, 1870). A.
Pinelodella elongata (Günther, 1860). DS.
Pinelodella gracilis (Valenciennes, 1840). A.
Pinelodella harrisi Fowler, 1940. A.
Pinelodella hastata Eigenmann, 1917. A.
Pinelodella latistoma (Müller & Troschel, 1840). A.
Pinelodella microura Allen, 1942. A.
Pinelodella peruanus Eigenmann y Myers, 1942. A.
Pinelodella peruanus Fowler, 1915. A.
Pinelodella rarae Eigenmann, 1917. A.
Pinelodella secura Eigenmann, 1917. A.
Pinelodella suzukii Steindachner, 1876. A.
Ranatra sacer (Valenciennes, 1840). A.

Astrolebiidae
Astroleb dus formus Fowler, 1945. AM, P, Y.
Astroleb dus gyraeus Humboldt, 1805. A.
Astroleb dus klickeri Pearson, 1957. AM, P, Y.
Astroleb dus longiceps Pearson, 1924. AM, P, Y.
Astroleb dus longiceps (Steindachner, 1883). AM, P, Y.
Astroleb dus marcas Myers, 1928. AM, P, Y.
Astroleb dus peruanus (Steindachner, 1873). AM, P, Y.
Astroleb dus praefectus Allen, 1942. AM, P, Y.
Astroleb dus riosi Eigenmann, 1922. AM, P, Y.
Astroleb dus sibolo (Valenciennes, 1840). AM, P, Y.
Astroleb dus simusos (Regan, 1904). AM, P, Y.
Astroleb dus stabeli Wundolleck, 1916. TI.
Astroleb dus superbus Pearson, 1937. AM, P, Y.
Astroleb dus usambaricus (Boulenger, 1890). AM, P, Y.
Astroleb dus vassene (Eigenmann, 1919). AM, P, Y.

Orestias gilsoni Tschernavin, 1944. TI.
Orestias gracilis Parenti, 1984. TI.
Orestias guyanensis Parenti, 1984. AM, P, Y.
Orestias herinari Parenti, 1984. AM, P, Y.
Orestias lasiostoma Parenti, 1984. TI.
Orestias macrolepis Günther, 1865. TI.
Orestias microposthata Lanuzanne, 1981. TI.
Orestias nemesi Valenciennes, 1846. AM, P, Y.
Orestias notialis Valenciennes, 1846. TI.
Orestias nufu Tschernavin, 1944. TI.
Orestias nufusi Tschernavin, 1944. TI.
Orestias obliquus Parenti, 1984. TI.
Orestias orinoco Valenciennes, 1846. TI.
Orestias oxycheilus Parenti, 1984. AM, P, Y.
Orestias olivaceus Günther, 1865. TI.
Orestias petiliae Valenciennes, 1839. TI.
Orestias profundus Tschernavin, 1944. AM, P, Y.
Orestias puno Tschernavin, 1944. TI.
Orestias reticulatus Parenti, 1984. TI.
Orestias robustus Parenti, 1984. TI.
Orestias rotundifrons Parenti, 1984. TI.
Orestias sabaus Allen, 1942. TI.
Orestias saquii Tschernavin, 1944. TI.
Orestias schmidti Castelnau, 1855. TI.
Orestias siberoi Tschernavin, 1944. TI.
Orestias sticho Tschernavin, 1944. TI.
Orestias sticho Parenti, 1984. TI.

Rivulidae
Rivulus brunneus Myers, 1954. A.
Rivulus canadesis Seegers, 1984. A.
Rivulus chinensis Seegers, 1983. A.
Rivulus cinctus Garman, 1895. A.
Rivulus elongatus Fels & de Rham, 1981 A.
Rivulus interwettini Fels & de Rham, 1981 A.
Rivulus iridescentus Fels & de Rham, 1981 A.
Rivulus menogenus (Steindachner, 1863). A.
Rivulus ornatus Garman, 1895. A.
Rivulus percussus (Regan, 1903). A.
Rivulus reticulatus Fels & de Rham, 1981 A.
Rivulus rubrofuscus Fels & de Rham, 1981 A.
Rivulus speciosus Fels & de Rham, 1981 A.
Rivulus triporus Günther, 1866. A.

PERCIFORMES

Cichlidae
Aequidens rivulatus (Gunther, 1859). BSE, DP.
Aequidens rivulatus (Steindachner, 1875). A.
Aequidens rivulatus (Cope, 1872). A.
Aequidens rivulatus (Steindachner, 1875). A.
Aequidens rivulatus (Hoedeman, 1951). A.
Aequidens rivulatus (Kullander, 1981). A.
Aequidens rivulatus (Kullander, 1976). A.
Aequidens rivulatus (Kullander, 1979). A.
Aequidens rivulatus (Meek, 1963). A.
Aequidens rivulatus (Agassiz, 1851). A.
Cichlasoma bolivianum Kullander, 1983. A.

OMS. 1980. Ordenamiento del medio para la lucha antivectorial. Cuarto informe del Comité de Expertos de la OMS en Biología de los Vectors y

O.S.P. () Distribución Geográfica de los Vectores de Malaria en el Perú. 1(9). (Informe inédito).

